Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice
نویسندگان
چکیده
BACKGROUND Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. METHODOLOGY/PRINCIPAL FINDINGS Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1-3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. CONCLUSIONS/SIGNIFICANCE IMD may possibly provide a new approach to attenuate VILI.
منابع مشابه
Rap1 mediates protective effects of iloprost against ventilator-induced lung injury.
Prostaglandin I(2) (PGI(2)) has been shown to attenuate vascular constriction, hyperpermeability, inflammation, and acute lung injury. However, molecular mechanisms of PGI(2) protective effects on pulmonary endothelial cells (EC) are not well understood. We tested a role of cAMP-activated Epac-Rap1 pathway in the barrier protective effects of PGI(2) analog iloprost in the murine model of ventil...
متن کاملJanus-faced signaling of cGMP in acute lung injury
The effect of increasing pulmonary endothelial cGMP concentration on endothelial function in acute lung injury appears to depend on 1) the presence of specific cGMP targets, 2) intracellular cGMP compartmentalization and 3) the timing of the increase in cGMP relative to the injury onset [1-4]. For example, we recently showed that pretreatment of pulmonary artery endothelial monolayers with 8pCP...
متن کاملSimvastatin attenuates ventilator-induced lung injury in mice
INTRODUCTION Mechanical ventilation (MV) is a life saving intervention in acute respiratory failure without alternative. However, particularly in pre-injured lungs, even protective ventilation strategies may evoke ventilator-induced lung injury (VILI), which is characterized by pulmonary inflammation and vascular leakage. Adjuvant pharmacologic strategies in addition to lung protective ventilat...
متن کاملSoluble guanylyl cyclase contributes to ventilator-induced lung injury in mice.
High tidal volume (HV(T)) ventilation causes pulmonary endothelial barrier dysfunction. HV(T) ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HV(T) lung injury, but the role of cGMP is unknown. In the current study, ventilation of isolated C57BL/6 mouse lungs increased perfusate cGMP as a function of V(T). Ventilation with 20 ml/kg V(T) for 80 min increased the fil...
متن کاملOxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo
BACKGROUND Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation resulting in ventilator-induced lung injury. Besides blunting the Toll-like receptor-4-induced inflammatory cascade and lung dysfunction in a model of lipopolysaccharide-induced lung injury, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exe...
متن کامل